

CBR BASED BOLUS RECOMMENDER SYSTEM

Ferran Torrent-Fontbona

- People with T1DM are usually in basal-bolus therapy
- Timely and accurate insulin dosage avoids hyperglycaemia and its consequent complications and reduces the risk of hypoglycaemia
- Bolus calculators:
 - Available in market products: pumps, glucose meters, apps...
 - They have been proved useful at improving glycaemic self-control
 - Drawbacks: difficulty setting parameters, need to regularly adjust them...
 - Far from achieving optimal results

- Provide a method capable of:
 - Estimating the personalised bolus calculator parameters
 - Learning from past experiences to adapt to new situations
 - Providing personalised adaptive bolus recommendations

CASE BASED REASONING

- Propose new solutions using past experiences
- Good results with small amounts of data

iversitat

le Girona

- The CBR estimates the Insulin to Carbs Ratio (ICR) and Insulin Sensitivity Factor (ISF)
- Then, it calculates the bolus dose

Objective: select similar past experiences

- ISF and ICR depend on several factors: stress, time of day, menstruations, illnesses...
- Not all factors have the same impact
- Proposed retrieve consists of two steps:
 - Context reasoning (select the case base corresponding to the context)
 - Similarity measure and case retrieval

Objective: Adapt past solutions to the new case

- Reuse ICR from retrieved cases
 - Weighted average according to the similarity
- Calculate ISF using the ICR

$$ISF = \frac{341.94 \cdot ICR}{W}$$

Walsh et al. (2011). Journal of Diabetes Science and Technology

Calculate bolus dose

$$B = \frac{CHO}{ICR} + \frac{G_c - G_{sp}}{ISF} - IOB$$

CHO: carbs G_c : blood glucose level G_{sp} : blood glucose target *IOB*: insulin on board *W*: body weight

Objective: revise and repair the proposed solution

• Revise: check minimum postprandial blood glucose and correct the recommended bolus (and ICR and ISF) to bring the value to the target one $\widehat{ICR} = (1 - \alpha)ICR_{reuse} + \alpha ICR_{c}$

8/16

Objective: manage the case base to keep it updated and efficient

- Concept drift problem
- Proposed maintenance
 - Save the revise query case
 - If there are similar enough cases to the query case in the case base, then remove them

- 11 virtual adults using UVA/PADOVA simulator
- Intra-day and physical activity variability have been added
- 50 simulations of 90-days
- Comparison with a run-to-run algorithm

11/16

Universitat <u>de Giro</u>na

Results (without exercise)

Universitat de Girona

Universitat <u>de Giro</u>na

Results (with exercise)

- The proposed system:
 - Automatically estimates the personalised ICR and ISF
 - Is capable of adapting the parameters to new situations
- Results are promising

THANK YOU FOR YOUR ATTENTION

ferran.torrent@udg.edu

\sim
Universitat
de Girona

		CBR (avg ± std)	R2R (avg ± std)
Without exercise	In target (%)	86.62 ± 1.73	78.07 ± 6.01
	Below target (%)	2.74 ± 0.85	7.05 ± 4.16
	Above target (%)	10.63 ± 1.40	14.88 ± 2.68
With exercise	In target (%)	82.51 ± 1.43	75.00 ± 4.93
	Below target (%)	4.51 ± 1.29	8.41 ± 3.43
	Above target (%)	12.98 ± 0.73	16.59 <u>+</u> 2.26

- Automatically learn similarity measure weights
- Similarity measure capable to deal with missing values
- Adaptable learning rate

• Without physical activity

• With physical activity

